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MOTIVATION

Modeling the atmosphere and the potentical avenues for deep learning

Numerical atmospheric models: backbone of
operational weather prediction

Input

Pre-Processing /
Data Preparation

e Increasing success of deep neural networks
(DNNSs) in various applications o
 DNNs for new applications in the weather e
prediction workflow (see, e.g., Schultz et al., 2021)
a  Object classification and localization Pattern classification § Toioesmerkiin il ok Sowmeciog wif g Prediction

input samples truth

Short-term forecasting

Post-Processing
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representation
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(Reichstein, Markus et al. 2019)
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MOTIVATION

Modeling the atmosphere and the potentical avenues for deep learning

* Numerical atmospheric models: backbone of
operational weather prediction

e Increasing success of deep neural networks
(DNNSs) in various applications

e DNNs for new applications in the weather
prediction workflow (see, e.g., Schultz et al., 2021)

 DNNs for weather forecasting:
o FourCastNet by Patha et al. on 8" August 2022

o PanguWeather by Bi et al. on 3th November
2022

o GraphCast by Lam et al. on 24" December 2022
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https://arxiv.org/abs/2202.11214
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https://arxiv.org/abs/2212.12794

WEATHER FORECAST WITH DEEP LEARNING

State-of-the-art

« FourCastNet by Patha et al. on 8" August 2022

* Vision Transformer (ViT)-based model

 FourCastNet is about 45,000 times faster than traditional
NWP models on a node-hour basis.

» FourCastNet's predictions are comparable to the IFS
model on metrics of Root Mean Squared Error (RMSE)
and Anomaly Correlation Coefficient (ACC) at lead times
of up to three days.
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WEATHER FORECAST WITH DEEP LEARNING

State-of-the-art

e PanguWeather by Bi et al. on 3th November 2022 rou 1o vio
e ... is a deep learning based system for fast and " N s
accurate global weather forecast o T £l
. . - = z 1:5— z j:: les
e ... IsaViT-based model (256 million parameter) ] =
e ... shows good performance for short to medium- o N o S
range forecast (i.e., forecast time ranges from one ki U0 o
hour to one week) ¥\\,\\ :
e ...outperforms state-of-the-art numerical weather g o1 g, g o
prediction IFS model, especially for loner lead times
2Ijorecas?tzTime (1;2urs) e 2I:‘orec.'as;zTime (1ljzurs) e 2)li‘lorecaszime (lrf:)urs) e
—— Pangu-Weather —— Operational IFS —— FourCastNet
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WEATHER FORECAST WITH DEEP LEARNING

GraphCast: Leaming skillful medinm-range global weather forecasting

State-of-the-art .
e GraphCast by Lam et al. on 24t December 2022 %
e ...outperforms the deterministic IFS model, as well as all % %Im ssssssmzssscoe----
previous ML baselines E ;
e ...can make 10-day forecasts, at 6-hour time intervals, of five T 4 ?‘“"
surface variables and six atmospheric variables, each at 37 g ;
vertical pressure levels > i
e ...can generate a 10-day forecast (35 gigabytes of data) in g %
under 60 seconds on Cloud TPU v4 hardware § %mmmmmm.....

»

Forecast lead tirr{e
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https://arxiv.org/abs/2212.12794

RESEARCH QUESTIONS

Video prediction for weather forecasting

Q1: Can we use video prediction approach to predict the
diurnal cycle of 2m temperature?

Q2. Are advanced video prediction models beneficial for
predicting the 2m temperature compare to shallow ones?

Q3: Can Generative Adversarial Networks (GANS) help to
enhance the performance of 2m temperature forecasting?

Vo 06.03.23 g o

From Oprea et al. 2020
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https://doi.org/10.1109/TPAMI.2020.3045007

PRINCIPLES OF VIDEO PREDICTION WITH DL

Spatial-temporal learning via video prediction methods

e ConvLSTM consists of two networks, an
encoding network and a forecasting network

(decoder)

e The decoder is conditioned on the last

generated frame.

e A convolution operator for the state-to-state
and input-to-state transitions

« Loss function (L1-loss):

T
£1(Xt0:T»Xt0:T) = Z | X ¢ _th
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Spatial-temporal learning via video prediction methods

e ConvLSTM consists of two networks, an
encoding network and a forecasting network

(decoder)

e The decoder is conditioned on the last

generated frame.

e A convolution operator for the state-to-state
and input-to-state transitions

« Loss function (L1-loss):

T
£1(Xt0:T»Xt0:T) = Z | X ¢ _th

Member of the Helmholtz Association

t=t0

06.03.23

Page 11

[ )
! Y Yroq Yr Yriq !
| |
i 4 t 4 ) |
i At Azl [ Ar—1 Ar Arsq |
Ay —» cell —p —» cell —» cell —» cell -
| i |
. | .
N L W -

! 4 t 4 t !
| |
i X X Xe X141 |
i !
e e et e e e e e e e e e e e e s

(a) LSTM Future Predictor Model

Yrq
rF 3
Cr-2 CT_l..
O—P 7 >
T r’@‘] tanh
rf, 4 |tanh l
T T L re, -b@—i_lp
X1 (b) ConvLSTM cell
W e A EE L A Yook

® Tensor product

(® Element-wise multiply

e Y

JULICH

Forschungszentrum



CAVEATS OF SIMPLE VIDEO PREDICTION MODELS

Limitation of applying pixel-wise loss =
Ground truth
¢ Models based on point-to-point losses =
] ] ) ConvLSTM
generate blurry images in autoregressive
. . - baseline §¥as Wy
= Decreased local spatial variability

Adopted from Wang et al. (2017)

= Deteriorated capability for predicting
extremes

T + 60 min T + 90 min

v’ Solution: Generative modelling

Observations @

N- o e TRl > N\
‘ 3 r ‘e . ‘
| - : S - \ ' =
L LEE 2 TR = -

-

Adopted from Ravuri et al. (2021)

Axial attention

(Ravuri S et. al, 2021)
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GENERATIVE MODELS

Implicit Density Modeling

e Generator to reconstruct data at next time step e e !

Noise !

 Discriminator to distinguish between generated and real data [i |
sequences 6 i) bl i
o | - : e (=

e Generator and discriminator are trained adversarial in a ‘ﬂ —.[ ]Gmum
minimax-optimization | a f
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GENERATIVE MODELS

Implicit Density Modeling

e Generator to reconstruct data at next time step e e !

e Problem:

' Noise
e Discriminator to distinguish between generated and real data [i —
seqguences I G hiay |
o | . ; e (=
e Generator and discriminator are trained adversarial in a | e m‘lﬂ—.[ lemum
minimax-optimization ; Rkt j’ Fe i

e mode collapse (reduced diversity in prediction) {
| oy g ,
e Remedy: : &

e Couple with VAE - Stochastic Adversarial Video prediction

e \Wasserstein GAN

Ll e

e Diffusion models

[ X ]
o ¢) JiLicH
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GENERATIVE MODELS

Stochastic adversarial video prediction (SAVP)

14M

Composite model architecture: GAN (to overcome blurriness
iIssue) + VAE (to overcome mode collapse issue)

« SAVP shares the same generator for VAE & GAN,
but deploys two different discriminators

e Loss function:

G* = arg minmax A, £L;(G,E) + Ay Ly (E) +Lgan(E, D) + LIAE(E, D)
D G

% Deep % Network @ - "
Input network output QHpPIng
Ground Latent LoOsSS )
- truth ‘ distribution ‘ Q Recurrence

function

&) JULICH
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

Experimental set-up

e Data source: ERA5 dataset from ECMWF

e Region: Crop hourly ERAS reanalysis data to Central ' o
Europe: 92x56 grid points with Ax=0.3° |

e Inputs: 2m temperature, 850 hPa temperature, Total cloud
cover (hourly, preceding 12 hours)

e Qutputs: 2m temperature (hourly, 12 hours lead time)
e Data period: 2007- 2019 (11 years for training)
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

Results: An illustrative case study...
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

Comparison between deep learning models ...

G* = arg minmax A, £;(G,E) + Ay, Liy(E) +Lgan(E,D) + L

VAE
GAN

Set-up : Strong scaling factor for L1-error in SAVP

loss function (A; = 10%)

v" Both models significantly outperform persistence
forecasting (skill scores > 0)
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

Comparison between deep learning models ...

G* = arg minmax A, £L;(G,E) + Ay Liy(E) +Lgan(E,D) + L

VAE
GAN

Set up : Strong scaling factor for L1-error in SAVP

loss function (A; = 10%)
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v" Both models significantly outperform persistence

forecasting (skill scores > 0)
v' SAVP is significantly superior to ConvLSTM
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

Comparison between deep learning models ...
G* =

Set up : Strong scaling factor for L1-error in SAVP
loss function (A; = 10%)

v" Both models significantly outperform persistence
forecasting (skill scores > 0)

v' SAVP is significantly superior to ConvLSTM

ConvLSTM is notorious (notorious for what? ->
missing adjective) for longer lead times
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

Comparison among deep learning models ...
G* =

Set up : Strong scaling factor for L1-error in SAVP
loss function (A; = 10%)

v" Both models significantly outperform persistence
forecasting (Skill scores > 0)

SAVP is significantly superior to ConvLSTM

ConvLSTM is notorious (notorious for what? ->
missing adjective) for longer lead times

v' Strong generator enables performance
Improvement (MSE, ACC, SSIM)

AN

06.03.23

Member of the Helmholtz Association

1.0

arg min max A, £,(G,E) + Ay Ly;(E) +Lcan(E, D) + L{4n(E,D) 091F

o
©

Skill scores of MSE
=} =]
()] ~

©
wn

o
S

Skill scores of SSIM

Page 21

1 2 3 4 5 6 7 8 9 10 11 12
Lead time (hours)

1 2 3 4 5 6 7 8 9 10 11 12

Lead time (hours)

°©o o o
o N

Skill scores of ACC
o
wm

Ratio of gradient (rg)

0.850

0.825

1 2 3 4 5 6 7 8 9 10 11 12
Lead time (hours)

—a— ConvLSTM_cvl
—a— ConvLSTM_cv2
—s— ConvLSTM_cv3
—+— SAVP_cvl
—+— SAVP_cv2
—+— SAVP_cv3

4 5 6 7 8 9 10 11 12
Lead time (hours)

1 2 3

e Y

JULICH

Forschungszentrum




SHORT-TERM FORECASTING OF 2M TEMPERATURE

Comparison among deep learning models ...

G*

Set up : Strong scaling factor for L1-error in SAVP
loss function (A; = 10%)

v

AN
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Both models significantly outperform persistence
forecasting (Skill scores > 0)

SAVP is significantly superior to ConvLSTM

ConvLSTM is notorious (notorious for what? ->
missing adjective) for longer lead times

Strong generator enables performance
Improvement (MSE, ACC, SSIM)

No significant difference in terms of local spatial
variability
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

Ablation study

(a) .
G* = arg minmax Ay L1(G,E) + Ay Liy(E) +Lgan(E,D) + LEAN(E, D)

v" Small sensitivity for A; > 100, but larger sensitivity for =15
A1 <100 (= Strong increase in importance of GAN- 2 -
component)

1 2 3 4 5 6 7 : 0o 11 12
Lead time (hours)
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

Ablation study

(a) v /{_,_4
G* = arg min max A, £;(G,E) + Ay L1y(E) +Lgan(E,D) + LEAN(E, D) e

v' Small sensitivity for A; > 100, but larger sensitivity for
A1 < 100 (= Strong increase in importance of GAN-
component)

v' MSE slightly increases when 2, is decreased i 3 3 4 5 6 7 8 & 10 11 12

v' Gradient ratio (local variability) increases significantly S

1 2 3 a4 5 6 7 3 0o 11 12
Lead time (hours)
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

Ablation study '
251 (a) ’ =
G* = arg minmax A, £;(G,E) + Ay; Ly (E) +Lsan(E,D) + LVAE(E,D) e
2.0
v" Small sensitivity for A; > 100, but larger sensitivity for = 15
A1 < 100 (= Strong increase in importance of GAN- =
component)
0.5
v' MSE slightly increases when 2, is decreased T 2 & & & @ § & & a5 o

v' Gradient ratio (local variability) increases significantly

v Trade-off between MSE and Gradient ratio

1 2 3 a4 5 6 7 3 0o 11 12
Lead time (hours)
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CONCLUSION

Key messages:
1) Can we use video prediction approach to predict the diurnal cycle of 2m temperature?

e Yes, the video prediction attain predictive skills, also for 2m temperature on sub-daily scale
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CONCLUSION

Key messages:
1) Can we use video prediction approach to predict the diurnal cycle of 2m temperature?
e Yes, the video prediction attain predictive skills, also for 2m temperature on sub-daily scale.

2) Are advanced video prediction models beneficial for predicting the 2m temperature compare to shallow
ones?

e Yes, the state-of-the-art video prediction model can significantly improve the 2 m temperature accuracy. The
predictors and the size of target region are also essential factors.
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CONCLUSION

Key messages:

1) Can we use video prediction approach to predict the diurnal cycle of 2m temperature?
e Yes, the video prediction attain predictive skills , also for 2m temperature on sub-daily scale

2) Are advanced video prediction models beneficial for predicting the 2m temperature compare to shallow
ones?

e Yes, the state-of-the-art video prediction model can significantly improve the 2 m temperature accuracy. The
predictors and the size of target region are also essential factors.

3) Can Generative Adversarial Networks (GANs) help to enhance the performance of 2m temperature
forecasting?

e A strong generator is key to improve the performance in terms of point-to-point evaluation metrics (MSE and ACC)
and global scale structure evaluation (SSIM). GAN-component is beneficial for the local scale variability (gradient

amplitude ratio). A trade-off between MSE and local variability is observed (dependent on weight for the GAN-
component)

[ X ]
o ¢) JiLicH
Member of the Helmholtz Association 06.03.23 Page 28 Forschungszentrum



PRECIPITATION NOWCASTING

Experiment setting

29.5°N B 1600
 Data source: Guizhou_minute AWS_data
on L St R
. . . 27.5°N P ) ISR R
e Time resolution: 10-minutes ﬁ,fv?
e Variables: prcp 26°N _%gg“‘ wo
e Spatial resolution: 0.125 degrees 0 FE b
e Data periOd: 24'533.505 105°E 107.5°E 110°E 104°E  105°E 106°E 107°E 108°E 109°E 110°E “
e 2013- 2017 (training), 2018 (validation), 2019 (Test) o o
e Data preprocessing: WE e
S ¢
e Bilinear interpolation ﬁ > “J;::_:@H "’ g
. . X ' iigF :4? ii;!' — :IE:- %E Yo . .
e Rainy sequence selection ) Y PR
. Generator 0’9'¢/vb»ﬂ Fake
e Log transformation ’ y o LD
LZ
e Min-Max normalization CLGAN Voo

e Model: CLGAN £r=(1—A)L° +AL2, 1€ [0,1]
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Verification methods

a) e b)

e Methods for forecasts of continuous variables: RMSE, Correlation Coefficient A Sope (0 i = e
e Methods for dichotomous (yes/no) forecasts: CSI . ‘ | .'

A= " ETS=-0.01
e Interest—O 81

e Methods for spatial forecasts:

) : '3 d)
200 pts. (800 km) to the east 1 125pts. 600 kum) to the easy,
biased high

e FSS (Fractions skill score) . . | . 9
« MODE (the Method for Object-based Diagnostic Evaluation) AT TN L (]
radar forecast '"te'estw=0~?9 Inerest-0.61
hits W+ ]+ |+ PR [P PO B g e R e >
CSI = — , | .
hits + misses + false alarms Ml EEEE e[+ . — . [
ContingencyTable TEEE = =
Observed N e + | + I I
yes no Total ] C - Eﬂ[\)lv:dxr_lmn
Forecast yes hits false alarms forecast yes —> X
' S 1, 6/25 0, 6/25 Adopted from Davis et al. (2009)
no| misses negatives forecast no
Adopted from Roberts and Lean (2008)
Total observed yes observed no total
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Results: Comparison among deep learning models ...

v" ConvLSTM and PredRNN-v2 are superior in terms of
point-by-point scores (CC and RMSE)

v" CLGAN performs best in terms of for dichotomous and
spatial forecast scores (CSI and FSS)

v" More capability to forecast heavy precipitation
events

v" More accurate prediction of the precipitation
location

v" CLGAN and PredRNN-v2 are able to capture
precipitation area fairly well

v The location of precipitation centroids is generally well
captured by all models

X The orientation angle and the aspect ratio of the
precipitation objects cannot be well simulated
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Results: Comparison among deep learning models ...

v" ConvLSTM and PredRNN-v2 are superior in terms of
point-by-point scores (CC and RMSE)

w
3
o
L8

120 40

N
wu

100

- L % %.8 30 ‘EZ'::J’
v" CLGAN performs best in terms of for dichotomous anc « i e
spatial forecast scores (CSI and FSS) : v 57 g
v More capability to forecast heavy precipitation ¢ = mE- s g
eventS . G 20 40 60 80 100 120 140 % 1 2 :3'0 0 s 5 10 15 20 25 30 3
. . . . . Observation Quantiles [Area (grid points)] Observation Quantiles [E-W centriod] Observation Quantiles [N-S centriod]
v" More accurate prediction of the precipitation . i
location E
506 % 20 —— Reference 1:1
v" CLGAN and PredRNN-v2 are able to capture g 03 & o —— Persistence
.. . . £ 04 g 5 —<— DenseRotation
precipitation area fairly well 3 03 —o— ConvLSTM
8 02 8 g_m w 8 —+— PredRNN-v2
v The location of precipitation centroids is generally well: . =8 = 3 —o— CLGAN

captured by all models. % 02 as o5 o8 TR ¢ B % B

Observation Quantiles [Aspect ratio] Observation Quantiles [Orientation angle]
X The orientation angle and the aspect ratio of the
precipitation objects cannot be well simulated
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Abstract. The prediction of precipitation patterns at high spatio-temporal resolution up to two hours ahead, also known as
Abstract. Numerical weather prediction (NWP) models hances the forecast quali

solve a system of partial differential equations based on phys- a larger spatial domain. L _ ' ) . i
ical laws to forecast the future state of the atmosphere. These cover as predictor or rec we are aiming to provide an efficient and easy-to-understand model - CLGAN, to improve the nowcasting skills of heavy

precipitation nowcasting, is of great relevance in weather-dependant decision-making and early warning systems. In this study,

models are deployed operationally, but they are computation-  to 8 years has only smal  precipitation events with deep neural networks for video prediction. The model constitutes a Generative Adversarial Network
ally very expensive. Recently, the potential of deep neural forecasts obtained in this (GAN) architecture whose generator is built upon an u-shaped encoder-decoder network (U-Net) equipped with recurrent
networks to generate bespoke weather forecasts has been ex- temporary NWP models,

plored in a couple of scientific studies inspired by the suc- ticated deep neural netwe LSTM cells to capture spatio-temporal features. A comprehensive comparison among CLGAN, and baseline models optical
cess of video frame prediction models in computer vision.  cast quality beyond the ' fow model DenseRotation as well as the advanced video prediction model PredRNN-v2 is performed. We show that CLGAN
In this study, a simple recurrent neural network with convo- driven way.

lutional filters, called ConvI.STM, and an advanced gener- outperforms in terms of scores for dichotomous events and object-based diagnostics. The ablation study indicates that the
ative network, the Stochastic Adversarial Video Prediction GAN-based architecture helps to capture heavy precipitation events. The results encourage future work based on the proposed

(.SAVP) model, are applied to create hourly forecasts of the EIR SR TR 10 CLGAN architecture to improve the precipitation nowcasting and early-warning systems.
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