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(DNNs) in various applications

• DNNs for new applications in the weather

prediction workflow (see, e.g., Schultz et al., 2021)

(Reichstein, Markus et al. 2019)
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• Numerical atmospheric models: backbone of 

operational weather prediction

• Increasing success of deep neural networks 

(DNNs) in various applications

• DNNs for new applications in the weather

prediction workflow (see, e.g., Schultz et al., 2021)

• DNNs for weather forecasting:

o FourCastNet by Patha et al. on 8th August 2022

o PanguWeather by Bi et al. on 3th November 

2022

o GraphCast by Lam et al. on 24th December 2022

Deep neural 
network or hybrid 

NWP-DL model
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https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2211.02556
https://arxiv.org/abs/2212.12794
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• FourCastNet by Patha et al. on 8th August 2022

• Vision Transformer (ViT)-based model 

• FourCastNet is about 45,000 times faster than traditional 

NWP models on a node-hour basis.

• FourCastNet’s predictions are comparable to the IFS 

model on metrics of Root Mean Squared Error (RMSE) 

and Anomaly Correlation Coefficient (ACC) at lead times

of up to three days. 

https://arxiv.org/abs/2202.11214


WEATHER FORECAST WITH DEEP LEARNING

• PanguWeather by Bi et al. on 3th November 2022

• … is a deep learning based system for fast and

accurate global weather forecast

• … is a ViT-based model (256 million parameter) 

• … shows good performance for short to medium-

range forecast (i.e., forecast time ranges from one

hour to one week)

• …outperforms state-of-the-art numerical weather

prediction IFS model, especially for loner lead times
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WEATHER FORECAST WITH DEEP LEARNING

• GraphCast by Lam et al. on 24th December 2022

• …outperforms the deterministic IFS model, as well as all 

previous ML baselines

• …can make 10-day forecasts, at 6-hour time intervals, of five

surface variables and six atmospheric variables, each at 37 

vertical pressure levels

• …can generate a 10-day forecast (35 gigabytes of data) in 

under 60 seconds on Cloud TPU v4 hardware
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State-of-the-art
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RESEARCH QUESTIONS
Video prediction for weather forecasting
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Q1: Can we use video prediction approach to predict the 

diurnal cycle of 2m temperature? 

Q2: Are advanced video prediction models beneficial for 

predicting the 2m temperature compare to shallow ones?

Q3: Can Generative Adversarial Networks (GANs) help to 

enhance the performance of 2m temperature forecasting?

𝑿0:𝑡0−1

෡𝑿𝑡0

෡𝑿𝑡0+1

From Oprea et al. 2020
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https://doi.org/10.1109/TPAMI.2020.3045007


PRINCIPLES OF VIDEO PREDICTION WITH DL
Spatial-temporal learning via video prediction methods
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• ConvLSTM consists of two networks, an 

encoding network and a forecasting network 

(decoder)

• The decoder is conditioned on the last 

generated frame.

• A convolution operator for the state-to-state

and input-to-state transitions

• Loss function (L1-loss):

𝓛1 𝑿𝑡0:𝑇 ,
෡𝑿𝑡0:𝑇 = ෍

𝑡=𝑡0

𝑇

|𝑿𝑡 − ෡𝑿𝑡|
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CAVEATS OF SIMPLE VIDEO PREDICTION MODELS
Limitation of applying pixel-wise loss

• Models based on point-to-point losses 

generate blurry images in autoregressive 

forecasting 

 Decreased local spatial variability 

 Deteriorated capability for predicting 

extremes  

 Solution: Generative modelling

(Ravuri S et. al, 2021)

Adopted from Ravuri et al. (2021) 

Adopted from Wang et al. (2017) 

06.03.23
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GENERATIVE MODELS

• Generator to reconstruct data at next time step

• Discriminator to distinguish between generated and real data 

sequences

• Generator and discriminator are trained adversarial in a 

minimax-optimization

06.03.23

Implicit Density Modeling
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GENERATIVE MODELS

• Generator to reconstruct data at next time step

• Discriminator to distinguish between generated and real data 

sequences

• Generator and discriminator are trained adversarial in a 

minimax-optimization

• Problem: 

• mode collapse (reduced diversity in prediction)

• Remedy:

• Couple with VAE  Stochastic Adversarial Video prediction

• Wasserstein GAN

• Diffusion models
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Implicit Density Modeling
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GENERATIVE MODELS
Stochastic adversarial video prediction (SAVP)

Page 15

Composite model architecture: GAN (to overcome blurriness 

issue) + VAE (to overcome mode collapse issue)

• SAVP shares the same generator for VAE & GAN,

but deploys two different discriminators

𝐺∗ = arg min max 𝜆1 ℒ1 𝐺, 𝐸 + 𝜆𝑘𝑙 ℒ𝑘𝑙 𝐸 +ℒ𝐺𝐴𝑁 𝐸,𝐷 + ℒ𝐺𝐴𝑁
𝑉𝐴𝐸 𝐸,𝐷

𝐺𝐷

• Loss function: 

14M
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SHORT-TERM FORECASTING OF 2M TEMPERATURE

• Data source: ERA5 dataset from ECMWF

• Region: Crop hourly ERA5 reanalysis data to Central 

Europe: 92x56 grid points with ∆𝑥=0.3°

• Inputs: 2m temperature, 850 hPa temperature, Total cloud 

cover (hourly, preceding 12 hours)

• Outputs: 2m temperature (hourly, 12 hours lead time)

• Data period: 2007- 2019 (11 years for training)
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Experimental set-up 
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SHORT-TERM FORECASTING OF 2M TEMPERATURE
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Results: An illustrative case study…
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6 h-
forecast

12 h-
forecast

ERA5 reanalysis Difference ConvLSTM Difference SAVP

(a) (b)(a) (c)

(d) (e) (f)



SHORT-TERM FORECASTING OF 2M TEMPERATURE
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Comparison between deep learning models …

𝐺∗ = arg min max 𝜆1 ℒ1 𝐺, 𝐸 + 𝜆𝑘𝑙 ℒ𝑘𝑙 𝐸 +ℒ𝐺𝐴𝑁 𝐸,𝐷 + ℒ𝐺𝐴𝑁
𝑉𝐴𝐸 𝐸,𝐷

Set-up : Strong scaling factor for L1-error in SAVP 
loss function (λ1 = 104)

 Both models significantly outperform persistence 
forecasting (skill scores > 0)
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Comparison among deep learning models …

𝐺∗ = arg min max 𝜆1 ℒ1 𝐺, 𝐸 + 𝜆𝑘𝑙 ℒ𝑘𝑙 𝐸 +ℒ𝐺𝐴𝑁 𝐸,𝐷 + ℒ𝐺𝐴𝑁
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Set up : Strong scaling factor for L1-error in SAVP 
loss function (λ1 = 104)

 Both models significantly outperform persistence 
forecasting (Skill scores > 0)

 SAVP is significantly superior to ConvLSTM

 ConvLSTM is notorious (notorious for what? -> 
missing adjective) for longer lead times

 Strong generator enables performance 
improvement (MSE, ACC, SSIM)
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Comparison among deep learning models …

𝐺∗ = arg min max 𝜆1 ℒ1 𝐺, 𝐸 + 𝜆𝑘𝑙 ℒ𝑘𝑙 𝐸 +ℒ𝐺𝐴𝑁 𝐸,𝐷 + ℒ𝐺𝐴𝑁
𝑉𝐴𝐸 𝐸,𝐷

Set up : Strong scaling factor for L1-error in SAVP 
loss function (λ1 = 104)

 Both models significantly outperform persistence 
forecasting (Skill scores > 0)

 SAVP is significantly superior to ConvLSTM

 ConvLSTM is notorious (notorious for what? -> 
missing adjective) for longer lead times

 Strong generator enables performance 
improvement (MSE, ACC, SSIM)

 No significant difference in terms of local spatial 
variability
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SHORT-TERM FORECASTING OF 2M TEMPERATURE
Ablation study 
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 Small sensitivity for λ1 > 100, but larger sensitivity for 
λ1 < 100 (= Strong increase in importance of GAN-
component)
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𝑉𝐴𝐸 𝐸,𝐷
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component)

 MSE slightly increases when λ1 is decreased

 Gradient ratio (local variability) increases significantly 
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 Small sensitivity for λ1 > 100, but larger sensitivity for 
λ1 < 100 (= Strong increase in importance of GAN-
component)

 MSE slightly increases when λ1 is decreased

 Gradient ratio (local variability) increases significantly 

 Trade-off between MSE and Gradient ratio

𝐺∗ = arg min max 𝜆1 ℒ1 𝐺, 𝐸 + 𝜆𝑘𝑙 ℒ𝑘𝑙 𝐸 +ℒ𝐺𝐴𝑁 𝐸,𝐷 + ℒ𝐺𝐴𝑁
𝑉𝐴𝐸 𝐸,𝐷
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CONCLUSION

1) Can we use video prediction approach to predict the diurnal cycle of 2m temperature?

• Yes, the video prediction attain predictive skills, also for 2m temperature on sub-daily scale

Key messages: 
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CONCLUSION

1) Can we use video prediction approach to predict the diurnal cycle of 2m temperature?

• Yes, the video prediction attain predictive skills , also for 2m temperature on sub-daily scale

2) Are advanced video prediction models beneficial for predicting the 2m temperature compare to shallow 

ones?

• Yes, the state-of-the-art video prediction model can significantly improve the 2 m temperature accuracy. The 

predictors and the size of target region are also essential factors. 

3) Can Generative Adversarial Networks (GANs) help to enhance the performance of 2m temperature 

forecasting?

• A strong generator is key to improve the performance in terms of point-to-point evaluation metrics (MSE and ACC) 

and global scale structure evaluation (SSIM). GAN-component is beneficial for the local scale variability (gradient 

amplitude ratio). A trade-off between MSE and local variability is observed (dependent on weight for the GAN-

component)

Key messages: 
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PRECIPITATION NOWCASTING

• Data source: Guizhou_minute_AWS_data

• Time resolution: 10-minutes

• Variables: prcp

• Spatial resolution: 0.125 degrees

• Data period: 

• 2013- 2017 (training), 2018 (validation), 2019 (Test) 

• Data preprocessing:

• Bilinear interpolation

• Rainy sequence selection

• Log transformation

• Min-Max normalization

• Model: CLGAN

06.03.23

Experiment setting
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PRECIPITATION NOWCASTING

• Methods for forecasts of continuous variables: RMSE, Correlation Coefficient

• Methods for dichotomous (yes/no) forecasts: CSI

• Methods for spatial forecasts:

• FSS (Fractions skill score)

• MODE (the Method for Object-based Diagnostic Evaluation)

06.03.23

Verification methods
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Adopted from Roberts and Lean (2008) 

𝑪𝑺𝑰 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

Adopted from Davis et al. (2009) 



PRECIPITATION NOWCASTING

 ConvLSTM and PredRNN-v2 are superior in terms of 
point-by-point scores (CC and RMSE)

 CLGAN performs best in terms of for dichotomous and 
spatial forecast scores (CSI and FSS)

 More capability to forecast heavy precipitation 
events

 More accurate prediction of the precipitation 
location

 CLGAN and PredRNN-v2 are able to capture 
precipitation area fairly well

 The location of precipitation centroids is generally well 
captured by all models

☓ The orientation angle and the aspect ratio of the 
precipitation objects cannot be well simulated
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Results: Comparison among deep learning models …
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