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Symmetric extreme dependency score

of vertical integrated liquid (VIL)

[2] Sun, Juanzhen, et al. "Use of NWP for nowcasting convective 

precipitation: Recent progress and challenges." Bulletin of the 

American Meteorological Society 95.3 (2014): 409-426.

• Requirements of convection-permitting NWP

• Advantages of statistical models in short-term forecasting [2]
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• Video prediction  New data-

driven approach for short-term 

weather forecasting [3]

[3] Reichstein, Markus et al. 2019. “Deep Learning and 

Process Understanding for Data-Driven Earth 

System Science.” Nature 566(7743): 195–204.



DEEP LEARNING ARCHITECTURES
Models - Convolutional LSTM (ConvLSTM)
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Convolutional  Long Short Term 
Memory (ConvLSTM) [4] performs 
convolution operator in each LSTM 
cell.

[4] Xingjian, S. H. I., et al. "Convolutional LSTM network: A 

machine learning approach for precipitation nowcasting." 

Advances in neural information processing systems. 2015.



DEEP LEARNING ARCHITECTURES
Models - ConvLSTM GAN (CLGAN)
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 CLGAN extends the ConvLSTM and 

U-Net by introducing the adversarial 

loss.

 CLGAN attempts to learn the 

spatiotemporal correlations and fine-

features to obtain sharp predictions 



DEEP LEARNING ARCHITECTURES
Models - Stochastic adversarial video prediction (SAVP)
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[5] Lee, Alex X., et al. "Stochastic adversarial video 

prediction." arXiv preprint arXiv:1804.01523 (2018).

Combines Generative adversarial nets 

(GAN) and variational autoencoder 

(VAE) and ConvLSTM to enable high-

quality stochastic video prediction [5]
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 Methods for forecasts of continuous variables

RMSE (Root mean square error)

ACC (Anomaly correlation coefficient)

 Methods for dichotomous (yes/no) forecasts

 Methods for spatial forecasts

MODE (the Method for Object-based 

Diagnostic Evaluation)

FSS (Fractions skill score)

CSI (Critical Success Index)

𝐶𝑆𝐼 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒𝑎𝑙𝑎𝑟𝑚𝑠



2m Temperature forecasts
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APPLICATION 1 

 Time resolution: Hourly

 Spatial resolution: 0.3 degrees

 Inputs:  previous 12 hours

 Outputs:  next 12 hours

 Region: Central Europe

 Input variables:  
2m Temperature, 850 hPa temperature,      

Cloud cover

Training data: ERA5 reanalysis data

Fig. Three-fold cross validation strategies for the 13 years data from 2007 to 2019 

Fig. Topographic height of study region 
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2m Temperature forecasts
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 SAVP shows remarkable 
improvements in terms of 
MSE and keep a higher  
consistency with 
observations than 
ConvLSTM in terms of ACC

Fig. Mean scores [(a) MSE, (b) ACC]  across lead times for 2 m temperature over verifi-cation periods 
with 95% bootstrap confidence intervals (shading area) on three cross valiation datasets 
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2m Temperature forecasts
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 SAVP behaves better in forecsat high/low temperature

Fig. Conditional quantile plots in terms of calibration-refinement factorization for 2 m temperature forecasts with the lead time of 
1hand 12h using ConvLSTM and SAVP model over 2016. The solid straight line is the 1:1 rference line, the dashed lines are 10th 

and 90th quantiles respectively and the solid line is the median.

SAVP ConvLSTM
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Fig. 2m temperature prediction with the 12th -hour lead time (1st row )  and the temperature differences between forecast and ground truth (2nd row)
(a) The best 2m temperature () prediction (2019-04-13 14:00:00) by  SAVP
(b) The 2m temperature () prediction (2019-04-13 14:00:00) by  ConvLSTM;

(a) (b)
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2m Temperature forecasts
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 The size of study region shows 
influence in results where the 
experiment in a larger region 
behaves better. 

 This is probably because large-
scale features can be captured by 
introducing large size of the data; or 
due to smaller marine regions in the 
smaller target domain, where the 
temperature has higher spatio-
temporal variability that hardly be 
captured by DL

Fig. Mean scores [(a) MSE, (b) ACC]  across lead times for 2 m temperature over verifi-cation periods 
with 95% bootstrap confidence intervals (shading area) on different size of study regions 



APPLICATION 2 
Precipitation nowcasting
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Fig. The spatial distribution of AWS over Guizhou 

Fig. Annual average cumulative precipitation in 
Guizhou from 2015 to 2019

 Time resolution: 10-Minutes

 Spatial resolution: 0.125 degrees

 Inputs:  previous 12 frames (120 minutes)

 Outputs:  next 12 frames (120 minutes)

 Region: Guizhou, China

 Training period: 2015~2018
Testing period: 2019

 Data preprocessing:
I. Bilinear interpolation
II. Log transformation
III. Maxmin normalization

Training data: observations from AWS



RMSE CSI

FSS MM

I

Fig. Mean scores [RMSE, CSI, FSS and MMI] across lead time for precipitation rate [mm/(10 minutes)] over the 
verification period using different models. The threshold T of CSI is 1 mm. The threshold T of FSS is 1 mm and the 
scale radius s is 3.

RESULTS
Precipitation nowcasting
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 All the video prediction 
models reduce the 
forecast errors compared 
with the persistence 
forecast in terms of 
RMSE, especially the 
ConvLSTM and CLGAN 
models

 CLGAN behave better in 
evaluation metrics for 
dichotomous and spatial 
forecasts in terms of CSI, 
FSS and MMI



RESULTS
Precipitation nowcasting
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 These precipitation 
attributes are computed 
following the method of 
object-based diagnostic 
evaluation 

 Video prediction models 
have advantages in 
forecasting precipitation 
area and position

 Forecasts of 
precipitation shape need 
improvements

Area y- centriod

Aspect 

ratio
Angle

x- centriod



SAVP

PersistenceConvLSTM

CLGAN

RESULTS
Precipitation nowcasting

Fig. An example of precipitation nowcasting [mm/(10 minutes)] generated by ConvLSTM, SAVP and CLGAN, with 
ground truth. The initial time is June 12th 2019 06:50 (BJT) and the lead time is every 20 minutes up to 2 hours 
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Ground truth



RESULTS
Precipitation nowcasting

Fig. Mean scores [RMSE, CSI, FSS and MMI] across lead time for precipitation rate [mm/(10 minutes)] over the 
verification period using different models. The threshold T of CSI is 1 mm. The threshold T of FSS is 1 mm and the scale 
radius s is 3.

RMSE CSI

FSS
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 When enlarging the 
weight of adversarial 
loss, the forecast error 
will increase in terms of 
RMSE while the scores 
for dichotomous and 
spatial forecasts 
improve in terms of CSI 
and FSS.

 The adversarial loss has 
more relationships with 
generating detailed 
structures. 
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 Video prediction models can achieve remarkable improvements in short-term weather forecasting.

 The SAVP model shows the best performance in 2 meter temperature forecasting. The size of study region 
shows influence in results where the experiment in a larger region behaves better. The predictors show a 
significant effect on forecast performance and adding other variables can improve the skills.

 The CLGAN model behaves better in precipitation nowcasting. Video prediction models have advantages 
in forecasting precipitation area and position while the forecasts of precipitation shape need 
improvements.

 Tuning the hyperparameters to balance adversarial loss and l2 loss is important when using GAN-based 
model in different applications.
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