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1) Motivation 2) The AtmoRep model

* Modelling of the atmosphere as a stochastical system

 High-resolved weather data is of great relevance for industry, society and ast
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* Recent success of deep neural networks (DNN) for statistical downscaling | X, X: colnditior:cing (model) state
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v Accurate and plausible reconstruction of small-scale features

o Trained with ERAS reanalysis

X  Expensive training for a single application > : : : : > ml 5 data (1979 — 2017)
x  Pairing of coarse- and high-resolved data often limits data availability : | I ERINERR R o Variables:
* Foundation Models (FMs) for weather and climate such as ClimaX (Nguyen e T, qy, vy, w on model levels

[96, 105, 114, 123, 137]

et al., 2023) and AtmoRep (Lessig et al., 2023) are potentially appealing _. .
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o Wide-range of downstream applications with SOTA performance after fine-tuning I - 3 3 3 (singleformer > multiformer)
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Research question:
Can we push the frontiers of downscaling with Foundation Models? Want to learn more about AtmoRep? %"Iﬁﬁg
Attend the AtmoRep talk: ESSI 1.1, 16:30 — 16:50 CEST S

4) Results

Point-wise evaluation

3) Downscaling with AtmoRep

The downscaling task Evaluation of spatial variability

* Downscale ERA5-data (Axgras = 0.25°) to (re-projected) COSMO-REA6 data O RS Eweny — LI6 K e 1;0 =
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Model setup for downscaling with AtmoRep
* Use three-field AtmoRep-configuration (|u, v, T]) with data from model
level 137 only

* Tail network appended to AtmoRep core model:
o Increased token size at the beginning of tail network

o Further embedding layer with doubled embedding dimension and updated positional
encoding

o Six transformer layers for downscaling
o Ensemble tail for probabilistic output

* Trainable core model and tail network (= very deep network)

Competing model
* Train a competing Wasserstein GAN to contextualize AtmoRep results

 Generator model of WGAN: U-Net by Sha et. al, 2020, standard ConvNet for
critic model

 Smaller target domain (96x120 grid points) due to shift invariance of CNNs

* Training data:
o T from model levels [96, 105, 114, 123, 137]
o vy from model level [137]
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5) Conclusion and outlook
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 Downscaling with AtmoRep has the potential to outperform existing solutions

 RMSE of initial AtmoRep downscaling model matches that of WGAN trained
with comprehensive set of predictors (not shown)

* Very deep neural network (1.85B parameters) = barely utilizes FM benefits

Next steps:

* Improve set-up of architecture (e.g. diffusion model) with prob. downscaling
* Analyse added value of FM approach
* Multivariate downscaling and application to arbitrary region
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